Let's find the motivation to use reliability statistics and find the resources to learn the statistical tools necessary to succeed.

When fitting a line or curve to data, it's a model. When modeling, it is worth remembering the George Box quote, Essentially all models are wrong, but some are useful. Yet, how do we separate a useful model from one that isn't useful? One step in finding a helpful regression model is to consider the residuals. BTW: Weibull analysis is another term for regression analysis.
Residuals in regression analysis are the differences between the data and the model-predicted values. When the regression fits' the data, the residuals should represent the naturally occurring experimental (measurement) errors. These should be well-behaved differences that tend to fit a normal distribution centered on zero.
Let's explore what residuals are, where they come from, and how to evaluate them to detect whether the fitted line (model) is adequate. Not checking or using a poor model is a recipe for major errors when making decisions. Checking residuals is one step to validating a model, yet it's quick and easy to accomplish.
This Accendo Reliability webinar was originally broadcast on 10 May 2022.
To view the recorded video, visit the webinar page.
Regression Metrics episode
How do I Control a Process That Trends Naturally Due to Tool Wear? article
Are You a Keyboard Jockey? article
Reliability Engineering Statistics course
Starting with Mathematical Foundations with Fred Schenkelberg episode
Let's find the motivation to use reliability statistics and find the resources to learn the statistical tools necessary to succeed.
Let's explore R software's many capabilities concerning reliability statistics from field data analysis, to statistical process control.
Let's explore an array of distributions and the problems they can help solve in our day-to-day relaibility engineering work.
Perry discusses the basics of DOE (design of experiments) and fundamentals so you can get started with they useful product development tool.
Let's discuss the 6 basic considerations to estimate the necessary sample size to support decision making.
When we make a measurement, we inform a decision. It's important to have data that is true to the actual value.
One of the first things I learned about data analysis was to create a plot, another, and another. Let the data show you what needs attention.
If you want a really easy introduction or review of these functions that help inform a decision then check out this webinar.
Sometimes we have to work out how many of them we need (if they make up a fleet) or how many spare parts we need to keep them running.
Let's explore the ways we use, or should use, statistics as engineers. From gathering data to presenting, from analyzing to comparing.
Let's explore what residuals are, where they come from, and how to evaluate them to detect if the fitted line (model) is adequate or not.
This webinar is a light (re)introduction into common mathematical symbols used in many engineering scenarios including reliability.
Reliability is a measure of your product or system. Confidence is a measure of you. But we often forget this.
How to calculate Gage discrimination - the more useful result for a design situation, and even how to use it for destructive tests.
For those who conduct reliability data analysis or turning a jumble of dots (data points) into meaningful information
It is not just a pretty shape' that seems to work, It comes from a really cool physical phenomena that we find everywhere.
Let's examine a handful of parametric and non-parametric comparison tools, including various hypothesis tests.