Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • CMMSradio
    • Way of the Quality Warrior
    • Critical Talks
    • Asset Performance
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Hero
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Breaking Bad for Reliability
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • The RCA
      • Communicating with FINESSE
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Hardware Product Develoment Lifecycle
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Special Offers
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • Your Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
      • FMEA Introduction
      • AIAG & VDA FMEA Methodology
    • Barringer Process Reliability Introduction
      • Barringer Process Reliability Introduction Course Landing Page
    • Fault Tree Analysis (FTA)
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
    • Accendo Reliability Webinar Series
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
Home » Uncategorized » Thermal Stress on Shafts

by Kerina Epperly Leave a Comment

Thermal Stress on Shafts

Thermal Stress on Shafts

Scenario

Commercial pizza ovens operate at sustained high temperatures to bake pizzas quickly and efficiently. During normal operation, oven walls and internal components (shafts, metal conveyors belts, pizza pans, support frames) are subjected to frequent and rapid temperature changes from startup, shutdown, door openings, product loading and unloading, and uneven heat distribution driven by airflow behavior


Cause

Thermal Stress develops when components experience rapid, non-uniform heating and cooling. Hot zones expand while cooler zones lag behind, creating thermal gradients within the same component. These gradients are strongly influenced by airflow dynamics inside the oven. If metal components are heated beyond their elastic limit, they may undergo plastic deformation, leading to permanent changes in shape and size.

Key contributors include:

  • Turbulent airflow patterns creating localized hot and cold spots, and thermal gradients
  • Dead zones with limited circulation allowing heat to stagnate or dissipate unevenly.
  • Fan performance degradation (wear, imbalance, fouling) altering designed airflow paths
  • Damper position, leakage, or control drift causing uneven heat distribution
  • Rapid heat-up and cool-down cycles during production changes
  • Material CTE mismatch relative to operating temperature range
  • Mechanical constraints preventing free thermal expansion
  • Exposure to cleaning chemicals, moisture, or food residues that promote corrosion during thermal cycling

Thermal Bowing in Oven ShaftsImpact

Over repeated thermal cycles, these combined thermal and flow-induced stress accumulate and can lead to:

  • Thermal bowing and warpage of shafts, conveyor frames, belts, and pans
  • Permanent deformation affecting alignment, belt tracking, and clearances
  • Thermal cracking initiating at high-gradient regions and stress concentrators
  • Stress corrosion cracking (SCC) where thermal stress overlaps with corrosive exposure
  • Reduced component life, increased maintenance, and degraded bake uniformity

This article is the first in a multi-part series on thermal stress–related shaft failures.
The articles that follow will focus on identifying thermally induced shaft damage, the inspection methods that reveal early warning signs, and the targeted maintenance actions that can interrupt the failure progression before it escalates into permanent deformation or fracture.


Tagline: Thermal failures don’t start with cracks, they start with airflow, constraints, and maintenance blind spots.


Join us on our YouTube channel for the free lecture: Thermal Expansion & Shaft Failure — Explained! 🔥 LS-005

Filed Under: Uncategorized

About Kerina Epperly

Kerina Epperly is a Failure Forensic Specialist, RCM2, TPM transformation leader, and the creator of FRAME-D an advanced diagnostic command center that makes reliability visual, simple, and teachable. With over 25 years of cross-industry experience, she brings a practical, investigative approach to solving equipment failures and elevating maintenance culture.

« Quality Objective 11: ADDRESS HIGH-RISK FAILURES

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Get Weekly Email Updates
The Accendo Reliablity logo of a sun face in circuit

Please login to have full access.




Lost Password? Click here to have it emailed to you.

Not already a member? It's free and takes only a moment to create an account with your email only.

Join

Your membership brings you all these free resources:

  • Live, monthly reliability webinars & recordings
  • eBooks: Finding Value and Reliability Maturity
  • How To articles & insights
  • Podcasts & additional information within podcast show notes
  • Podcast suggestion box to send us a question or topic for a future episode
  • Course (some with a fee)
  • Largest reliability events calendar
  • Course on a range of topics - coming soon
  • Master reliability classes - coming soon
  • Basic tutorial articles - coming soon
  • With more in the works just for members

© 2026 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy

Book the Course with John
  Ask a question or send along a comment. Please login to view and use the contact form.
This site uses cookies to give you a better experience, analyze site traffic, and gain insight to products or offers that may interest you. By continuing, you consent to the use of cookies. Learn how we use cookies, how they work, and how to set your browser preferences by reading our Cookies Policy.