Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • Critical Talks
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
    • Asset Reliability @ Work
  • Articles
    • CRE Preparation Notes
    • on Leadership & Career
      • Advanced Engineering Culture
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • ReliabilityXperience
      • RCM Blitz®
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
    • Reliability Engineering Management DRAFT
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Feed Forward Publications
    • Openings
    • Books
    • Webinars
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Reliability Analysis Methods online course
    • Measurement System Assessment
    • SPC-Process Capability Course
    • Design of Experiments
    • Foundations of RCM online course
    • Quality during Design Journey
    • Reliability Engineering Statistics
    • An Introduction to Reliability Engineering
    • An Introduction to Quality Engineering
    • Process Capability Analysis course
    • Root Cause Analysis and the 8D Corrective Action Process course
    • Return on Investment online course
    • CRE Preparation Online Course
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home

by Mike Sondalini 1 Comment

Isolation Valves for Different Services

Isolation Valves for Different Services

Valves can be used to both isolate and regulate liquid and gas flow.

Valve used for isolation duties must provide secure, tight shut-off. Consideration must be given to the nature of the process chemical, the quality of sealing and the impact of outside environmental occurrences.

Keywords: bubble tight, design pressure, leakage rate, fire rated, differential pressure.

The purpose of a valve

The purpose of a valve is for isolation or regulation.

Isolation valves seal the fluid off on one side of the valve. Regulating valves meter the flow through the body.

The construction of valves

The essence of valve operation is closing or opening a gap by moving one surface against another.

This occurs within the valve body. In the case of manual and actuated valves, a stem sticks out of the body and has to be sealed to prevent leakage. Figure 1 shows a variety of valve and seat sealing arrangements.

Figure 1 A range of valve types

Valves are constructed to manufacturing standards that specify performance requirements for the materials used in the valve. The completely assembled valve is also required to pass leakage tests.

Two widely used leakage standards are API 598 (American Petroleum Institute) and BS 6755 (British Standard).

Acceptable leakage rates from valves

Both standards accept some leakage from certain styles of valve. Table 1 shows what is acceptable in API 598.

Resilient valves are those with one or both sealing surfaces made of plastic or rubber. When a resilient valve is tested with liquid no leakage is allowed during the test period. If tested with a gas one bubble is allowed during the test.

Table 1 API 598 leakage rates
Size RangeResilient Seated
Values
Metal Seated Valves
Except Check
Metal Seated Check Valves
InchesLiquidGasLiquidGas
≤ 200 0Liquid 0.18 in3 (3 cm3) per minute per inch nominal diameter 1 cm3 = 16 drops water1.5 std ft3 (0.042 m3) of gas per hr per inch nominal diameter
2 1⁄2 – 601224
8 – 1202040
≥1402856

The test pressure used for most valves is 110% of the maximum allowable pressure for which the valve is designed at 38oC (100oF). But for butterfly valves, it is 110% of the design differential pressure.

This means when ordering butterfly valves, you must specify the maximum in-service pressure. The differential pressure rating is the ability to hold pressure from one side of the valve to the other. The allowable pressure depends on the materials from which the valve is made and the stresses allowed in the materials.

The test pressure is held on the valve for a specified period of time defined in the applicable standard. Table 2 is from API 598 for a high-pressure closure test.

Table 2 API 598 pressure holding times
Minimum test duration in seconds for closure test.
Valve Size (inches)Check valveAll other valves
≤2601.5
2 1/2 – 66060
6 – 1260120
≥ 14120120

More demanding standards are available. An example is API 6D, which allows no visible leakage during the test period.

However, manufacturers will find it difficult and costly to achieve such a standard for metal to metal seat valves. Valve manufacturer’s catalogs specify which standards they meet.

Fire rated valves

Fire testing exposes valves in the closed position, filled with water under pressure, to flames producing a temperature near the valve of 760oC – 980oC for a 30-minute period to establish a leakage through the valve to atmosphere.

After cooling the valve is pressurized with water to assess the pressure containing the capacity of the valve body and seats. If you require fire rated valves ask for test documentation.

Considerations when selecting valves

What the tables above do not say is that metal seated valves larger than 2-inch may leak from day one and get progressively worse with use. For many services that may not be a problem.

However, for corrosive, hazardous and toxic gases and liquids, it is important to know that most metal seated valves leak. Picking the right valve type is critical for safe operation.

The tests do not consider effects such as distortion from ‘water’ hammer, high seal face open – close cycles, high temperatures and temperature differentials causing thermal expansion, chemical degradation like corrosion of sealing faces and ‘wire draw’ across slightly open valves.

One option for more reliable isolation using all metal valves is to use a double block and bleed configuration. Two valves are installed slightly apart and a third valve is used to drain the pipe between them.

 

Look at the valve stem

The other location that can leak is at the valve stem. Check that the packing or sealing o-ring(s) is suitable for the service. An example is where the manufacturer installs packing for hydrocarbons but you require the valve for process chemicals.

In this case, change the packing to the right type for the process.

Beware of valve stems that are exposed to the process.

If a valve stem extends into the process fluid when closed, and raises when open, there will be a thin smear of chemical clinging to the stem as it wipes past the seal. The raised stem is now exposed to outside world conditions.

The process chemical may dilute with moisture in the air or from hose-downs and attack the stem or it may dry on the stem and cut the seal when next lowered.

Other operating considerations include:

  • whether the lines are to be pigged (use full bore valves)
  • liquid thermal expansion causing pressure build-up
    between closed valves (install pressure bypass valving)
  • position indicators to show close- open position
  • back seating to prevent stem leakage when the valve is open
  • product build-up on seat faces (stroke the valve
    regularly)
  • pressure loss minimization (use full bore valves).

Mike Sondalini – Maintenance Engineer


We (Accendo Reliability) published this article with the kind permission of Feed Forward Publishing, a subsidiary of BIN95.com

Web: trade-school.education
E-mail: info@trade-school.education

Filed Under: Articles, on Maintenance Reliability, Plant Maintenance Tagged With: valves

« The Sum of Squares Concept
How to Correct a Failing Lean Six Sigma Program »

Comments

  1. andrea says

    March 1, 2017 at 7:19 AM

    Hey, Guys, I would also recommend Galassi & Ortolani here, they have been making special valves since years. The have a wide range of products, comprising: diaphragm valves, pinch valves, butterfly valves, ball valves, gate valves, check valves & pneumatic actuators. Here is their website: http://www.galassiortolani.com/category/butterfly-valves/

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Article by
Mike Sondalini
in the
Plant Maintenance series articles provided courtesy of Feed Forward Publications and Lifetime Reliability Solutions.

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • Terrorism Risk Insurance Act Exclusions: Gray Coverage Areas
  • Why Total Productive Maintenance Is The Answer To Reliability-Centered Culture
  • 17 Powerful Insights on Effective Communication Using FINESSE
  • Surprising Insights from Simple Run Charts
  • Risk is Round

© 2023 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy

This site uses cookies to give you a better experience, analyze site traffic, and gain insight to products or offers that may interest you. By continuing, you consent to the use of cookies. Learn how we use cookies, how they work, and how to set your browser preferences by reading our Cookies Policy.