Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • CMMSradio
    • Way of the Quality Warrior
    • Critical Talks
    • Asset Performance
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Hardware Product Develoment Lifecycle
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • Your Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
      • FMEA Introduction
      • AIAG & VDA FMEA Methodology
    • Barringer Process Reliability Introduction
      • Barringer Process Reliability Introduction Course Landing Page
    • Fault Tree Analysis (FTA)
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
    • Accendo Reliability Webinar Series
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
Home » LMS » Reliability Analysis Methods » M01 Reliability Concepts & Data » 01 Why Reliability & Typical Questions

by Steven Wachs Leave a Comment

01 Why Reliability & Typical Questions

01 Why Reliability & Typical Questions

Module 1 Reliability Concepts & Data

Lesson M01-01

Text: Section 1 page 1

Duration: 18 minutes

  • Reliability Analysis Methods
    • M01 Reliability Concepts & Data
      • 01 Why Reliability & Typical Questions
      • 02 Defining Reliability
      • 03 Type of Reliability Data & Unique Aspects
      • 04 Censored Data
      • 05 The Bathtub Curve & Reliability Function
    • M02 Probability & Reliability Statistics
      • 01 Probability Basics
      • 02 Conditional Probability, Independent Events, & Exercise
      • 03 Reliability Metrics & Statistics
      • 04 Common Distributions & Weibull Distribution
      • 05 Conditional Reliability & Exercise
      • 06 Review Exercises
      • 07 Useful Discrete Distributions & Exercise
    • M03 Assessing & Selecting Models for Time-to-Failure Data
      • 01 Overview of Distribution Fitting & Reliability
      • 02 Probability Plots & Minitab Demonstration
      • 03 Constructing Probability Plots
      • 04 Distribution Fitting with Right-Censored Data
      • 05 Exercises
      • 06 Distribution Fitting with Multiple Failure Modes
      • 07 Exercise and Module Wrap-up
    • M04 Estimation of Reliability Metrics
      • 01 Overview of Reliability Estimation & Methods
      • 02 Confidence Intervals & Bounds
      • 03 Using Minitab to Estimate Reliability Metrics (Demo)
      • 04 Exercise
      • 05 Reliability Estimation with Censored Data
      • 06 Comparing Multiple Groups
      • 07 Exercises
      • 08 Handling Multiple Failure Modes & Exercise
      • 09 Non-Parametric Estimation
      • 10 Other Methods for Reliability Prediction
    • M05 Introduction to System Reliability
      • 01 System Reliability Overview & Basic Series Systems
      • 02 Basic Parallel Systems & Short Exercise
      • 03 k-out-of-n Parallel Systems & Combination Systems
      • 04 Exercises
      • 05 Complex Systems
      • 06 Reliability Importance, Reliability Allocation, & other Concepts
    • M06 Reliability Test Planning
      • 01 Reliability Testing Ideas
      • 02 Reliability Test Planning & Censoring Schemes
      • 03 Reliability Estimation Test Planning
      • 04 Exercises
      • 05 Reliability Demonstration Test Planning
      • 06 Exercise
      • 07 Zero Failure Test Plans Special Case & Module Wrap-up
    • M07 Analysis of Warranty Data
      • 01 Warranty Analysis Overview & Key Concepts
      • 02 Data Setup & Calculations
      • 03 Minitab Demonstration
      • 04 Exercise
    • M08 Design for Reliability (DFR)
      • 01 Design for Reliability (DFR) Overview
      • 02 DFR Process & Methodology Overview
    • M09 Introduction to Advanced Topics
      • 01 Types of Accelerated Life Testing (ALT)
      • 02 Introduction to Quantitative ALT
      • 03 Introduction to Repairable System Analysis
      • 04 Stress-Strength Analysis

 

Intense global competition and increasing customer expectationsIntense global competition and increasing customer expectations have increased the pressure on manufacturers to produce high-quality and reliable products. Improving reliability is a key element of the larger overall objective of improving product quality. The survival of any manufacturer today is dependent on its ability to produce reliable products.

Although a primary objective of reliability analysis is to improve product reliability, there are many possible reasons for collecting and analyzing reliability data. Several examples are the following:

  • Assessing product reliability in the field
  • Predicting product warranty costs
  • Assessing the effect of a proposed design change
  • Demonstrating product reliability to customers or government agencies
  • Improving reliability through the use of laboratory experiments
  • Providing risk assessment for safety-critical systems

 

  • Reliability Analysis Methods
    • M01 Reliability Concepts & Data
      • 01 Why Reliability & Typical Questions
      • 02 Defining Reliability
      • 03 Type of Reliability Data & Unique Aspects
      • 04 Censored Data
      • 05 The Bathtub Curve & Reliability Function
    • M02 Probability & Reliability Statistics
      • 01 Probability Basics
      • 02 Conditional Probability, Independent Events, & Exercise
      • 03 Reliability Metrics & Statistics
      • 04 Common Distributions & Weibull Distribution
      • 05 Conditional Reliability & Exercise
      • 06 Review Exercises
      • 07 Useful Discrete Distributions & Exercise
    • M03 Assessing & Selecting Models for Time-to-Failure Data
      • 01 Overview of Distribution Fitting & Reliability
      • 02 Probability Plots & Minitab Demonstration
      • 03 Constructing Probability Plots
      • 04 Distribution Fitting with Right-Censored Data
      • 05 Exercises
      • 06 Distribution Fitting with Multiple Failure Modes
      • 07 Exercise and Module Wrap-up
    • M04 Estimation of Reliability Metrics
      • 01 Overview of Reliability Estimation & Methods
      • 02 Confidence Intervals & Bounds
      • 03 Using Minitab to Estimate Reliability Metrics (Demo)
      • 04 Exercise
      • 05 Reliability Estimation with Censored Data
      • 06 Comparing Multiple Groups
      • 07 Exercises
      • 08 Handling Multiple Failure Modes & Exercise
      • 09 Non-Parametric Estimation
      • 10 Other Methods for Reliability Prediction
    • M05 Introduction to System Reliability
      • 01 System Reliability Overview & Basic Series Systems
      • 02 Basic Parallel Systems & Short Exercise
      • 03 k-out-of-n Parallel Systems & Combination Systems
      • 04 Exercises
      • 05 Complex Systems
      • 06 Reliability Importance, Reliability Allocation, & other Concepts
    • M06 Reliability Test Planning
      • 01 Reliability Testing Ideas
      • 02 Reliability Test Planning & Censoring Schemes
      • 03 Reliability Estimation Test Planning
      • 04 Exercises
      • 05 Reliability Demonstration Test Planning
      • 06 Exercise
      • 07 Zero Failure Test Plans Special Case & Module Wrap-up
    • M07 Analysis of Warranty Data
      • 01 Warranty Analysis Overview & Key Concepts
      • 02 Data Setup & Calculations
      • 03 Minitab Demonstration
      • 04 Exercise
    • M08 Design for Reliability (DFR)
      • 01 Design for Reliability (DFR) Overview
      • 02 DFR Process & Methodology Overview
    • M09 Introduction to Advanced Topics
      • 01 Types of Accelerated Life Testing (ALT)
      • 02 Introduction to Quantitative ALT
      • 03 Introduction to Repairable System Analysis
      • 04 Stress-Strength Analysis


About Steven Wachs

Steven Wachs has 25 years of wide-ranging industry experience in both technical and management positions. Steve has worked as a statistician at Ford Motor Company where he has extensive experience in the development of statistical models, reliability analysis, designed experimentation, and statistical process control.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy

Book the Course with John
  Ask a question or send along a comment. Please login to view and use the contact form.
This site uses cookies to give you a better experience, analyze site traffic, and gain insight to products or offers that may interest you. By continuing, you consent to the use of cookies. Learn how we use cookies, how they work, and how to set your browser preferences by reading our Cookies Policy.