Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • CMMSradio
    • Way of the Quality Warrior
    • Critical Talks
    • Asset Performance
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Hero
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Breaking Bad for Reliability
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • The RCA
      • Communicating with FINESSE
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Hardware Product Develoment Lifecycle
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Special Offers
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • Your Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
      • FMEA Introduction
      • AIAG & VDA FMEA Methodology
    • Barringer Process Reliability Introduction
      • Barringer Process Reliability Introduction Course Landing Page
    • Fault Tree Analysis (FTA)
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
    • Accendo Reliability Webinar Series
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
Home » Articles » FMEA Quality Objective 9: Design Improvements

by Carl S. Carlson Leave a Comment

FMEA Quality Objective 9: Design Improvements

Progressive improvement beats delayed perfection. Mark Twain

In this article, I will outline how to evaluate an individual Design FMEA or Process FMEA against the FMEA Quality Objective for design improvements.

What is meant by “design improvement”?

An essential part of FMEA procedure is for the FMEA team to recommend and implement actions to reduce risk to an acceptable level. For Design FMEAs, this includes actions to improve the product design. For Process FMEA, this includes actions to improve the design of the manufacturing or assembly process. Of course, there are other types of actions that can be recommended, such as test improvements; but this quality objective is focused on design improvements.

Why is it a primary objective of FMEA to improve the design?

Years ago, many FMEAs did not recommend action to improve product designs or testing. They merely identified risk, which is important, but misses opportunities. When FMEA procedure identifies failure modes, effects and causes, it is a value-added step to go further and determine what can be done to reduce risk; and that often means changing and improving the design. Today, FMEAs are leveraged to improve designs, and achieve risk reduced to an acceptable level.

One of the reasons FMEA can improve designs is because the FMEA team is made up of a cross-functional team. The team includes experts in product design and other skills. It is a natural extension of the risk identification to recommend actions to reduce severity and occurrence risk by changing the design.

What is the FMEA Quality Objective related to design improvements?

FMEA Quality Objective 9: The FMEA drives actions to improve product or process designs as the primary objective.

How can you assess how well an FMEA meets the Quality Objective for Design Improvements?

Review the FMEA Recommended Actions. See how many of them improve the product design (for Design FMEAs) or the process design (for Process FMEAs). See if they were implemented.

What is an example of assessing Quality Objective # 9?

As an example, we’ll use an excerpt from a fictitious Design FMEA on a bicycle handbrake to assess Quality Objective 9.

BicycleHandBrakeExampleDFMEA

Based on the excerpt of the handbrake DFMEA, here is an example of the evaluation of FMEA Quality Objective # 9: Design Improvements.

HandbrakeDI

Tip

In addition to reviewing the FMEA Recommended Actions, you should also talk to the FMEA team. You want to determine how well the team focused on design improvements. Was it their primary objective.

Summary

One of the primary objectives of an FMEA is to improve the product design (for Design FMEAs), and improve the process design (for Process FMEAs). By following these simple steps you can ensure the FMEA is high value, and meets Quality Objective # 9.

Filed Under: Articles, Inside FMEA Tagged With: FMEA Quality Objectives

About Carl S. Carlson

Carl S. Carlson is a consultant and instructor in the areas of FMEA, reliability program planning and other reliability engineering disciplines, supporting over one hundred clients from a wide cross-section of industries. He has 35 years of experience in reliability testing, engineering, and management positions, including senior consultant with ReliaSoft Corporation, and senior manager for the Advanced Reliability Group at General Motors.

« Reliability Testing 101: Purpose, Timing and Value

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Get Weekly Email Updates
The Accendo Reliablity logo of a sun face in circuit

Please login to have full access.




Lost Password? Click here to have it emailed to you.

Not already a member? It's free and takes only a moment to create an account with your email only.

Join

Your membership brings you all these free resources:

  • Live, monthly reliability webinars & recordings
  • eBooks: Finding Value and Reliability Maturity
  • How To articles & insights
  • Podcasts & additional information within podcast show notes
  • Podcast suggestion box to send us a question or topic for a future episode
  • Course (some with a fee)
  • Largest reliability events calendar
  • Course on a range of topics - coming soon
  • Master reliability classes - coming soon
  • Basic tutorial articles - coming soon
  • With more in the works just for members
Speaking of Reliability podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Dare to Know podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Accendo Reliability Webinar Series podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • FMEA Quality Objective 9: Design Improvements
  • Reliability Testing 101: Purpose, Timing and Value
  • The 3 Best Reasons to Use MTBF
  • How to Delay Wear Out?
  • End of Big Business as We Know It

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy

Book the Course with John
  Ask a question or send along a comment. Please login to view and use the contact form.
This site uses cookies to give you a better experience, analyze site traffic, and gain insight to products or offers that may interest you. By continuing, you consent to the use of cookies. Learn how we use cookies, how they work, and how to set your browser preferences by reading our Cookies Policy.