Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • Critical Talks
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
    • Asset Reliability @ Work
  • Articles
    • CRE Preparation Notes
    • on Leadership & Career
      • Advanced Engineering Culture
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • ReliabilityXperience
      • RCM Blitz®
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Feed Forward Publications
    • Openings
    • Books
    • Webinars
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Reliability Analysis Methods online course
    • Measurement System Assessment
    • SPC-Process Capability Course
    • Design of Experiments
    • Foundations of RCM online course
    • Quality during Design Journey
    • Reliability Engineering Statistics
    • Quality Engineering Statistics
    • An Introduction to Reliability Engineering
    • An Introduction to Quality Engineering
    • Process Capability Analysis course
    • Root Cause Analysis and the 8D Corrective Action Process course
    • Return on Investment online course
    • CRE Preparation Online Course
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home

by Doug Lehr Leave a Comment

Modelling and Simulation

Modelling and Simulation

A high-pressure packer for use in 9 5/8”, thick-walled, P-110 casing is being developed for a well barrier application. It is based on a legacy configuration. Is it a candidate for simulation?

The modelling of completion equipment begins when a component is developed using 3D CAD software. The engineer selects component geometry based on application constraints, initial calculations, a basis of design document, etc. After modelling all components in the configuration, these models are merged to create the assembly model.

Simulation is then performed on the models to study their response to inputs. Finite elements analysis (FEA) software is used to study a component’s “localized” response (e.g., stress in a fillet) to a range of combined loading inputs. Computational flow dynamics (CFD) software can be used to simulate the response of an orifice over a range of fluid flowrates. And nonlinear analysis software can be used to simulate the viscoelastic response of a rubber component to a force input over time.

Simulation requires expensive software and computing systems, experts who can perform the simulations, or the use of 3rd parties. Simulation is not always required to establish component or assembly response to inputs, but some reasons for conducting simulation are:

  • Regulatory requirements.
  • Complex loading scenarios.
  • Industry product standard requirements.
  • The equipment is for use in a critical application.
  • Investigation of nonlinear response to inputs (rubber packing elements).
  • Configuration maturity: Is the TRL high (mature, proven) or low (immature, unknown)?

The answer to the question posed at the beginning of this article is that the high-pressure packer should be further analyzed using simulation if the TRL is low, or if any of the other bullets apply. If the decision is YES, then all simulation must be conducted early in the project so that any necessary improvements can be assessed as part of the laboratory testing program. 

TRUTH: Simulation must be conducted when the highest equipment reliability is needed.

This is the 8th in a series of 10 articles on critical equipment design for offshore completions.

  1. Critical Equipment Fundamentals
  2. Technology Readiness Level (TRL)
  3. Materials and Design Risk
  4. Temperature Deration
  5. Design for Reliability (DfR)
  6. Using Industry Standards in Design
  7. Factors of Safety and Load Factors
  8. Modelling and Simulation
  9. FMEA Improves the Bottom Line
  10. Lab Testing Programs

 

Filed Under: Articles, Equipment Risk and Reliability in Downhole Applications, on Risk & Safety

« Name that Failure Pattern (3)…
What is a CUSUM Chart and When Should I Use One? »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Articles by Doug Lehr, P.E., Founder and Principal, Integris Technology
in the Equipment Risk and Reliability in Downhole Applications series

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • How to Reduce Maintenance Cost The Right Way
  • Significance Over Success. Innovation Over Change. Anticipation Over Agility
  • Maintenance Planning and Scheduling for World Class Reliability and Maintenance Performance
  • Self-Discipline Part 1
  • Is Safety Training Helpful?

© 2023 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy

This site uses cookies to give you a better experience, analyze site traffic, and gain insight to products or offers that may interest you. By continuing, you consent to the use of cookies. Learn how we use cookies, how they work, and how to set your browser preferences by reading our Cookies Policy.