Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • Critical Talks
    • Dare to Know
    • Maintenance Disrupted
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
    • Asset Reliability @ Work
  • Articles
    • CRE Preparation Notes
    • on Leadership & Career
      • Advanced Engineering Culture
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • ReliabilityXperience
      • RCM Blitz®
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
    • Reliability Engineering Management DRAFT
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Feed Forward Publications
    • Openings
    • Books
    • Webinars
    • Journals
    • Higher Education
    • Podcasts
  • Groups
    • Reliability Integration
    • Mastermind
    • Study Groups
  • Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Reliability Analysis Methods online course
    • Measurement System Assessment
    • SPC-Process Capability Course
    • Design of Experiments
    • Foundations of RCM Online Course
    • Reliability Engineering Statistics
    • An Introduction to Reliability Engineering
    • Process Capability Analysis course
    • Root Cause Analysis and the 8D Corrective Action Process course
    • Return on Investment online course
    • CRE Preparation Online Course
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home

Metals Engineering and Product Reliability

The topics should be of interest to product design engineers. I’ll write about topics related to the metals engineering perspective to component design and metallurgical aspects of component reliability.

by Michael Pfeifer, Ph.D., P.E. Leave a Comment

Designing Components for Strength and Fatigue

Designing Components for Strength and Fatigue

Metal strength and fracture toughness are important mechanical properties for components exposed to fatigue conditions and components with stress concentrations. Optimization of the two properties through alloy selection and component fabrication must be considered when designing components for these situations.

For structural components, strength and fracture toughness are two important mechanical properties. Yield strength is the stress a metal can withstand before deforming. Tensile strength is the maximum stress a metal can support before starting to fracture. Fracture toughness is the energy required to cause a material that contains a crack to fracture.

[Read more…]

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

by Michael Pfeifer, Ph.D., P.E. 2 Comments

Example of Using Failure Analysis to Improve Reliability

Example of Using Failure Analysis to Improve Reliability

Here’s an example of how a metallurgical failure analysis led to identification of the root cause of a failure, and to identification of the corrective actions needed to prevent the failures from recurring.

Failure analysis

As I discussed in my previous article, metallurgical failure analysis can be used to improve product reliability. The information from failure analysis of a failed component is used to determine the root cause of the failure. Once the root cause is identified, the failure analysis data and findings is used to help identify the corrective measures required to prevent the failure from recurring.

[Read more…]

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

by Michael Pfeifer, Ph.D., P.E. Leave a Comment

Using Failure Analysis to Improve Product Reliability

Using Failure Analysis to Improve Product Reliability

Failures during product testing and use are a fact of life. Even with the most robust design we can develop an overly aggressive reliability test or find users that dish out punishing treatment, causing product failures. And for designs that are less robust, standard reliability tests and normal users will cause failures, occasionally or frequently depending on the design robustness.

When a product fails, its related to failure of individual components and/or joints between components. When a component or joint fails, it’s because their materials degraded to the point that the component or joint could no longer perform as required.

[Read more…]

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

by Michael Pfeifer, Ph.D., P.E. 2 Comments

Reliability Testing – Product vs. Materials

Reliability Testing – Product vs. Materials

Any product is an assembly of components comprised of different materials. The reliability of the product depends on the reliability of the materials – their ability to withstand exposure to the use conditions without degrading to the point that the component or joint stops performing as needed.

There are two approaches for evaluating the reliability of materials: 1) product testing and 2) materials testing.  Both involve exposing test samples to actual or simulated use conditions and evaluating the response of the test samples as a function of the amount of exposure to the test conditions. For example, exposure to thermal cycling between -40 and +40 °C or exposure to salt spray. [Read more…]

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

by Michael Pfeifer, Ph.D., P.E. Leave a Comment

Metal Corrosion

Metal Corrosion

In the previous article I discussed sources of stressors that can cause degradation of the materials in components and joints. In this article I’ll discuss the basics of metal corrosion – the electrochemical cell, seven common forms of corrosion, and examples of metals engineering and mechanical design approaches to control corrosion.

[Read more…]

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

by Michael Pfeifer, Ph.D., P.E. Leave a Comment

Design for Reliability – Identifying Stressors

Design for Reliability – Identifying Stressors

In the previous articles I discussed the component design process, the considerations for designing components, and the importance of leveraging materials engineering to design components that meet performance and reliability requirements at low cost.

I will start focusing on reliability, discussing the considerations for identifying component and joint reliability requirements. I will refer only to components for ease of writing and reading, but the discussion also applies to metallurgical joints, i.e. weld, braze, and solder joints.

In this article, I will discuss identification of the conditions that can cause degradation of the materials that comprise components and joints. [Read more…]

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

by Michael Pfeifer, Ph.D., P.E. Leave a Comment

Component Design Process

Component Design Process

In the previous article I discussed product design in general and the importance of leveraging materials engineering to design components that meet performance and reliability requirements at low cost. Both component form and materials can and should be engineered to optimize a component’s design.

In this article I discuss a component design process that explicitly includes materials engineering considerations. This process involves consideration of all design requirements and cost. Not just designing for reliability. That’s where selecting materials gets tricky – having to consider different sets of requirements and design for ease of component fabrication and joining.

[Read more…]

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

by Michael Pfeifer, Ph.D., P.E. 1 Comment

Product reliability and Materials Engineering

Product reliability and Materials Engineering

This article is the first in a series about material engineering and product reliability. The intent of the article is to provide you with a basic understanding of product reliability as viewed through the eyes of a material engineer. When I first talk to engineers who have a different background or focus, I start with the basics. As we speak more, I expand into relevant areas one at a time. That is what I hope to do with this series. Introduce you to some basics, and then move on to a deeper dive into the topic.

When considering product reliability, a materials engineer is concerned with how the materials in components respond when exposed to stressors that can cause the materials to degrade. Stressors include mechanical loads, corrosive environments, chemicals, heat and cold, electricity, and radiation. You may find additional stressors based on the environment components are used in, or how they are used. It’s a problem if a component or joint in a product degrades to the point where it stops functioning as required.

[Read more…]

Filed Under: Articles, Metals Engineering and Product Reliability, on Product Reliability

Headshot of Michael PfeiferArticles by Michael Pfeifer, Ph.D., P.E.
in the Metals Engineering and Product Reliability article series

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Posts

  • Unfit for Purpose – revised
  • Design a Maintenance Planning and Scheduling Process for Both Reactive and Planned Maintenance
  • Information Underload: Deprivation or Attnetion Deficiency
  • Cautiously Confident
  • Managing Time

© 2022 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy

This site uses cookies to give you a better experience, analyze site traffic, and gain insight to products or offers that may interest you. By continuing, you consent to the use of cookies. Learn how we use cookies, how they work, and how to set your browser preferences by reading our Cookies Policy.