Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • CMMSradio
    • Way of the Quality Warrior
    • Critical Talks
    • Asset Performance
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • Your Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
      • FMEA Introduction
      • AIAG & VDA FMEA Methodology
    • Barringer Process Reliability Introduction
      • Barringer Process Reliability Introduction Course Landing Page
    • Fault Tree Analysis (FTA)
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
    • Accendo Reliability Webinar Series
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
Home » Articles » CRE Preparation Notes » Probability and Statistics for Reliability » Retro Standard Deviation Calculation

by Fred Schenkelberg Leave a Comment

Retro Standard Deviation Calculation

Retro Standard Deviation Calculation

Edited by John Healy

You use your calculator or spreadsheet, or even a statistics software package to calculate standard deviation, which is an estimate of the population standard deviation. Yet, understanding how one could calculate standard deviation without such advanced tools may prove useful. The knowledge of basic sum of squares methods provides a foundation for ANOVA and DOE analysis techniques.

If nothing else, this little bit of historical knowledge may enhance the reputation of those that did these calculations by hand or with mechanical adders and slide rules. Statisticians in the past had to be resourceful individuals, just to accomplish the calculations we take for granted today.

Recall that the formula for the sample standard deviation is

$$ \large\displaystyle s=\sqrt{\frac{\sum\nolimits_{i-1}^{n}{{{\left( {{x}_{i}}-\bar{X} \right)}^{2}}}}{n-1}}$$

Where xi is the data, X̄ is the data average, and n is the number of data points.

Let’s say we have 12 points of data and with to calculate the standard deviation.

SamplexX-bar(X-X̄)(X-X̄)^2
1244324-806400
2322324-24
3391324674489
4313324-11121
533732413169
6321324-39
7276324-482304
8299324-25625
934332419361
10333324981
11383324593481
1232732439

1. Calculate the average (X̄ or mean)

$$ \large\displaystyle \bar{X}=\frac{\sum\nolimits_{i=1}^{n}{{{x}_{i}}}}{n}=\frac{2190}{12}=324$$

2. Compute the deviation between xi and X̄

$$ \large\displaystyle ({{x}_{i}}-\bar{X})$$

3. Square each deviation

$$ \large\displaystyle {{({{x}_{i}}-\bar{X})}^{2}}$$

4. Sum the squares of the deviations

$$ \large\displaystyle \sum\nolimits_{i=1}^{n}{{{({{x}_{i}}-\bar{X})}^{2}}}$$

5. Calculate the sample standard deviation

$$ \large\displaystyle s=\sqrt{\frac{\sum\nolimits_{i-1}^{n}{{{\left( {{x}_{i}}-\bar{X} \right)}^{2}}}}{n-1}}=\sqrt{\frac{18053}{11}}=40.5$$

Of course if you have the full dataset of the population, you can calculate the population standard deviation using the same method, just do not subtract 1 from n in the denominator of step 5.

In summary, use your calculator and use n-1 in the denominator when calculating the sample standard deviation.


Related:

Central Limit Theorem (article)

Point and Interval Estimates (article)

8 Steps to creating an X-bar and s control chart (article)

 

Filed Under: Articles, CRE Preparation Notes, Probability and Statistics for Reliability Tagged With: Probability concepts

About Fred Schenkelberg

I am the reliability expert at FMS Reliability, a reliability engineering and management consulting firm I founded in 2004. I left Hewlett Packard (HP)’s Reliability Team, where I helped create a culture of reliability across the corporation, to assist other organizations.

« Meditation and Design for Reliability
Can a Product Have Perfect Reliability? »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

CRE Preparation Notes

Article by Fred Schenkelberg

Join Accendo

Join our members-only community for full access to exclusive eBooks, webinars, training, and more.

It’s free and only takes a minute.

Get Full Site Access

Not ready to join?
Stay current on new articles, podcasts, webinars, courses and more added to the Accendo Reliability website each week.
No membership required to subscribe.

Get Weekly Email Updates
  • CRE Preparation Notes
  • CRE Prep
  • Reliability Management
  • Probability and Statistics for Reliability
  • Reliability in Design and Development
  • Reliability Modeling and Predictions
  • Reliability Testing
  • Maintainability and Availability
  • Data Collection and Use

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy

Book the Course with John
  Ask a question or send along a comment. Please login to view and use the contact form.
This site uses cookies to give you a better experience, analyze site traffic, and gain insight to products or offers that may interest you. By continuing, you consent to the use of cookies. Learn how we use cookies, how they work, and how to set your browser preferences by reading our Cookies Policy.