Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • Critical Talks
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
    • Asset Reliability @ Work
  • Articles
    • CRE Preparation Notes
    • on Leadership & Career
      • Advanced Engineering Culture
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • ReliabilityXperience
      • RCM Blitz®
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Feed Forward Publications
    • Openings
    • Books
    • Webinars
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Reliability Analysis Methods online course
    • Measurement System Assessment
    • SPC-Process Capability Course
    • Design of Experiments
    • Foundations of RCM online course
    • Quality during Design Journey
    • Reliability Engineering Statistics
    • Quality Engineering Statistics
    • An Introduction to Reliability Engineering
    • An Introduction to Quality Engineering
    • Process Capability Analysis course
    • Root Cause Analysis and the 8D Corrective Action Process course
    • Return on Investment online course
    • CRE Preparation Online Course
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home

by Doug Lehr Leave a Comment

Well Tortuosity

Well Tortuosity

Tortuosity is defined as “something winding or twisted” or “full of twists and turns”.

Well tortuosity is typical of today’s unconventional wells (see Figure 1) and is now acknowledged to result in casing deformation such as collapsed inner diameters (“ovalized casing”). There is also growing awareness among shale operators that excessive tortuosity can predispose the casing to rupture which results in fracturing fluids going into the wrong stages. Rupture occurs in sections which are deformed and therefore more vulnerable to cyclic fracturing pressures, pressure-induced bending, and earth loads.

A tortuous unconventional well path shown in aerial view (top) and elevation view (bottom).

Casing failure can also result from a frac plug that was damaged during conveyance. Forcing a nonmetallic frac plug through ovalized casing, or subjecting it to frequent stick-slip, will damage it (see The Pump-In Process). Forcing a long perforating gun-running tool-frac plug assembly through a tight bend in casing will also damage the frac plug (see The Plug and Perf Process). Damaged frac plugs seal poorly with the casing ID, which leads to leakage, jetting of fracturing fluids through the leaking packing element, erosion of the casing wall, and eventual rupture.

As was stated in Frac Plug Reliability, a frac plug cannot have tolerance for an infinite range of wellbore conditions. So, what can be done to mitigate against frac plug damage from tortuosity?

Frac plug geometry is based on permanent packer geometry, meaning that the plug OD-to-casing ID clearance is small. Higher clearance metallic packer products are commercially available but are unsuitable for unconventional well completions. A high-expansion composite version would be less sensitive to wellbore tortuosity. This is a commercial opportunity.

Modelling with caliper log and high-resolution gyro data can now generate 3D casing paths showing locations of restrictions along the path. These “hot spots” determine the maximum diameter for a given length of completion assembly. With this information, an OEM can adjust assembly lengths and diameters to safely traverse hot spots. This method is also being used for long completion tools such as electric submersible pumps (ESPs) which are ~65 ft. long.

TRUTH: Well tortuosity not only damages frac plugs, but also predisposes casing to fail.

This is the 5th in a series of five articles on why Frac Plugs fail in Plug and Perf applications.

  1. The Plug and Perf Process
  2. Frac Plug Reliability
  3. Ballistic Setting Tools
  4. The Pump-In Process
  5. Well Tortuosity

Filed Under: Articles, Equipment Risk and Reliability in Downhole Applications, on Risk & Safety

« Resilience, Resolve, and Reliable Products
Why FMEA Needs to be Team-Based »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Articles by Doug Lehr, P.E., Founder and Principal, Integris Technology
in the Equipment Risk and Reliability in Downhole Applications series

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • Risk Prioritization in FMEA – a Summary
  • What Are Best Practices for Facilitating Qualitative Assessments?
  • So, What’s Still Wrong with Maintenance
  • Foundation of Great Project Outcomes – Structures
  • What is the Difference Between Quality Assurance and Quality Control?

© 2023 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy

This site uses cookies to give you a better experience, analyze site traffic, and gain insight to products or offers that may interest you. By continuing, you consent to the use of cookies. Learn how we use cookies, how they work, and how to set your browser preferences by reading our Cookies Policy.