Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • Critical Talks
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
    • Asset Reliability @ Work
  • Articles
    • CRE Preparation Notes
    • on Leadership & Career
      • Advanced Engineering Culture
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • ReliabilityXperience
      • RCM Blitz®
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Feed Forward Publications
    • Openings
    • Books
    • Webinars
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Reliability Analysis Methods online course
    • Measurement System Assessment
    • SPC-Process Capability Course
    • Design of Experiments
    • Foundations of RCM online course
    • Quality during Design Journey
    • Reliability Engineering Statistics
    • An Introduction to Reliability Engineering
    • An Introduction to Quality Engineering
    • Process Capability Analysis course
    • Root Cause Analysis and the 8D Corrective Action Process course
    • Return on Investment online course
    • CRE Preparation Online Course
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home

by Fred Schenkelberg 1 Comment

Paired-Comparison Hypothesis Tests

Paired-Comparison Hypothesis Tests

Hypothesis testing previously discussed (link to past posts) generally considered samples from two populations. Maybe the experiments explored design changes, different component vendors, or two groups of customers. Occasionally you may find data that has some relationship between the samples, or where the samples are from the same population. Paired (or matched) data involves samples that are related in some meaningful way.

If we wanted to compare the diagnostic capability of two shops, for example, we could use the same set of bikes and ask both shops to inspect and provide an estimate for repairs. The two shops inspect the same samples, thus the samples are paired. Another example involves very similar samples, separated during testing for exposure to different conditions. The idea is each sample has a partner sample (or is the same sample) in the two sets of samples or measurements under consideration.

Test Setup

The null hypothesis for a paired t-test is Ho: μd = Do.

A paired t-test is often a two-sided test, which looks for a difference where one sample is higher or lower than the other by Do. You can also look for differences that are less than or greater than zero, or some other value. The three alternate hypothesis become:

μd > Do
μd < Do
μd ≠ Do

Note: we are assuming the differences are normally distributed. If the differences are not normally distributed use the binomial hypothesis test or the Wilcoxon signed rank test instead. d is the difference in measurements or readings of the paired samples. d-bar is the average of the differences, and sd is the standard deviation of the differences. The degrees of freedom used to determine the critical value is df = n-1. The critical value is tα/2,df where (1 – α)100% is the type I confidence level. We calculate the test statistic using

$$ \large\displaystyle t=\frac{\bar{d}-{{D}_{o}}}{{}^{{{s}_{d}}}\!\!\diagup\!\!{}_{\sqrt{n}}\;}$$

The degrees of freedom used to determine the critical value is df = n-1. The critical value (or rejection region) for the three tests given a (1-α)100% confidence level becomes:

Reject Ho if t > tα,df
Reject Ho if t < tα,df
Reject Ho if |t| > tα/2,df

Let’s say we have two technicians measuring the diameter of bicycle fork tubes with calipers. We suspect the measurement method is different between the two technicians and want to learn if it is significant. Therefore, using five tubes we asked each technician to measure the tube diameter. The data follows:

SampleTechnician ATechnician BDifference (d)
13.1253.1100,015
23.1203.0950.025
33.1353.1150.020
43.1303.1200.010
53.1253.1250

The average of the differences d-bar is 0.014 and the standard deviation, sd = 0.0096. The five samples, n = 5, provides degrees-of-freedom of df = n-1 = 5-1 = 4.

The critical value is t0.025, 4 = 2.776 given an α = 0.05 or a 95% confidence level.

The test statistic is

$$ \large\displaystyle t=\frac{\bar{d}-{{D}_{o}}}{{}^{{{s}_{d}}}\!\!\diagup\!\!{}_{\sqrt{n}}\;}=\frac{0.014-0}{{}^{0.0096}\!\!\diagup\!\!{}_{\sqrt{5}}\;}=3.256$$

Since 3.256 is larger than 2.776 and in the rejection region, the null hypothesis is rejected. This means there is convincing evidence the two technicians do not measure the fork tubes and arrive at the same results.


Related:

Hypothesis Test Selection (article)

Hypothesis un-equal variance (article)

Equal Variance Hypothesis (article)

 

Filed Under: Articles, CRE Preparation Notes, Probability and Statistics for Reliability Tagged With: Critical Value, Hypothesis Testing (parametric and non-parametric)

« Influence and Reliability
Equal Variance Hypothesis »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

CRE Preparation Notes

Article by Fred Schenkelberg

Join Accendo

Join our members-only community for full access to exclusive eBooks, webinars, training, and more.

It’s free and only takes a minute.

Get Full Site Access

Not ready to join?
Stay current on new articles, podcasts, webinars, courses and more added to the Accendo Reliability website each week.
No membership required to subscribe.

  • CRE Preparation Notes
  • CRE Prep
  • Reliability Management
  • Probability and Statistics for Reliability
  • Reliability in Design and Development
  • Reliability Modeling and Predictions
  • Reliability Testing
  • Maintainability and Availability
  • Data Collection and Use

© 2023 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy

This site uses cookies to give you a better experience, analyze site traffic, and gain insight to products or offers that may interest you. By continuing, you consent to the use of cookies. Learn how we use cookies, how they work, and how to set your browser preferences by reading our Cookies Policy.