Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • CMMSradio
    • Way of the Quality Warrior
    • Critical Talks
    • Asset Performance
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Hero
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Breaking Bad for Reliability
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • The RCA
      • Communicating with FINESSE
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Hardware Product Develoment Lifecycle
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Special Offers
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • Your Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
      • FMEA Introduction
      • AIAG & VDA FMEA Methodology
    • Barringer Process Reliability Introduction
      • Barringer Process Reliability Introduction Course Landing Page
    • Fault Tree Analysis (FTA)
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
    • Accendo Reliability Webinar Series
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
Home » Podcast Episodes » Quality during Design » QDD 021 Designing Specs for QA

by Dianna Deeney Leave a Comment

QDD 021 Designing Specs for QA

Designing Specs for QA

Creating specs for suppliers and producers is generally at the forefront of our thoughts about the activity. But, it’s also important to design for our QA friends, too, for inspection.

We talk about what acceptance sampling is all about. We also step through a thought process for identifying and creating design features for inspection using FMEA.

 

View the Episode Transcript

If you don’t have an FMEA, then you can still think through a similar thought process and base inspection levels from how critical that feature is to the design.

As we’re designing, we can think about how we’re going to be testing and inspecting our product against our specs. We may need to adjust our designs on paper to be able to inspect the parts in hand.

Citations

 

Episode Transcript

We’re setting up specifications for our product and we need to figure out the incoming and final inspections. How does quality assurance perform inspections on lots? What level of inspection is needed for which features of the product? We’ll explore some quality assurance methods and the designers input into them after this brief introduction.

Hello and welcome to Quality during Design, the place to use quality thinking to create products others love for less. My name is Dianna. I’m a senior level quality professional and engineer with over 20 years of experience in manufacturing and design. Listen-in and then join the conversation at qualityduringdesign.com.

If you’re designing products, you’re likely defining specifications. These are the drawings, lists of materials, and other things needed for someone to be able to make our product. Forefront in most of our minds is communicating to manufacturers and suppliers. But we need to remember our QA friends, too. As far as inspections, there are really three options: don’t inspect (rely on other controls or measures), 100% Inspect every part, or take a sample of a lot. If we’re developing products made in batches or lots, QA is likely going to sample part of that lot. They take a few parts from the batch and inspect it, and then they make a decision about the acceptability of the whole batch based on that sample. Do these products meet our spec? This is called acceptance sampling.

The most obvious case of when we use acceptance sampling is when our test to specification is a destructive test. I mean, we can’t wreck all of our product to see if it meets specs. It’s also used when 100% inspection is too expensive or too difficult; someone examining thousands of parts can get tired and miss defects anyway. Near you. We could also use acceptance sampling when we want the suppliers to be responsible for the quality of their lot. If we reject the lot, they may be forced to screen that lot for other defects, which is costly for them. This is all set up as part of the supplier relationship.

With sampling, yes there is risk in making an error: rejecting lots that actually conform to our specs and accepting lots of product that don’t meet our specs. This is where some statistics get involved. Think of it as a sliding scale: on one end is no inspection, on the other is 100% inspection, and in between there are various sampling recipes, plans and systems that can be set up. You can talk to your friendly neighborhood Quality Engineer about things like OC curves (which is short for operating characteristic curve), distributions, producer’s and consumer’s risk, single versus double sampling plans, Dodge-Romig tables…There’s a whole branch of quality studies just associated with sampling, but lots of producers use it and it’s a proven system that has been working for about 100 years.

Today, we are design engineers deciding how to characterize the features of our product. Our goal is to set up inspections for parts that line up with what’s important. What we need to decide is this: identifying what to inspect, defining how critical it is to the design, and helping to determine how it’s physically going to get inspected. Today I’m going to use my FMEA (failure mode effects analysis). This is a table that organizes information about potential failures and their effects (to the product, the people that use it, and the environment) and what could cause the failures to happen. This table also helps us analyze what we’re doing to control these problems. Are we doing things to prevent or detect the problems so that they don’t happen?

The first thing I consider is what features should Quality Assurance inspect? Here’s a thought process I would take:

  • If a design feature is wrong, does it cause failure?
  • What kind of failure does it cause?
  • Is it something that has an effect that’s really bad?

If yes to all of those questions, then I’d consider it to be a critical feature. Now, what types of controls do we have in place? Should we add a control to this design feature that detects if there’s a problem? If so, we can use QA inspection as a way to control the cause of the failure. We’re using QA inspection to detect problems.

Another thing I consider is what level of assurance do we need about the quality of the product? Or in other words, how critical is it? I would again refer to my FMEA. How bad can things potentially get if this design feature isn’t right? We can base this on a lot of things:

  • Is this a piece of a system that if it fails, the whole system becomes unusable?
  • If this piece is wrong, does it affect any decisions that the users are making when using the product?
  • Or does the product become hazardous to people or the environment?

From this we could start to get a better understanding of how much risk we’re willing to take in the sample for inspection. Your producer will likely have a documented sampling system associated with a level of criticality, like critical, major, and minor. And you can associate the level of inspection of your particular part feature to one of those levels. Critical features will have more stringent sampling requirements than the feature that is minor. If using the FMEA to guide us, we’ll likely get a mix of critical, major, and minor inspection levels for the features were inspecting. I recommended to assign them to be true to what it actually is. We don’t want to label everything as critical just because that’s the safest option. That’s putting unnecessary burden on the sampling scheme.

Another thing I consider is:

  • How are they going to inspect these features?
  • What tools are they going to use?
  • When are we checking our parts: while it’s being made or after it’s all done?

This is where we may want to talk to our QA friends about the tools available to them. If we start thinking about this early in the design process, we could create our design to be able to be inspected. Sometimes what we think is a critical feature that we want to inspect is too difficult to reliably inspect. Or if we would have created our spec a little differently, then instead of having to use an expensive coordinate measuring machine, QA could use a handheld caliper to measure the feature. Another example is designing to allow for in-process inspections. Can we easily interrupt the assembly to perform an inspection or test, or does it become difficult to handle the half-assembled product so test becomes difficult? These are things we can consider as we’re designing.

The last thing I likely think about is who is going to inspect it: our in-house QA department, or are we relying on our suppliers to report the results of their QA inspection? This is where a conversation with someone in supplier quality management may help. They may understand the capabilities of the suppliers and what types of inspection agreements are possible to set up.

These can all be tricky questions, but ones we need to consider to fully develop our specs.

What can we do with what we’ve talked about today? I’ve demonstrated the use of an FMEA to help guide decisions about inspections. If you have an FMEA, pull it out and take a look at it. See if you can use it like I do. If you don’t have an FMEA, then you can still think through a similar thought process. Base inspection levels from how critical that feature is to the design. Finally, as we’re designing, we can think about how we’re going to be testing and inspecting our product against our specs. We may need to adjust our designs on paper to be able to inspect the parts in hand.

Please visit this podcast blog and others at qualityduringdesign.com. Subscribe to the weekly newsletter to keep in touch. If you like this podcast or have a suggestion for an upcoming episode, let me know. You can find me at qualityduringdesign.com on Linked-In, or you could leave me a voicemail at 484-341-0238. This has been a production of Denney Enterprises. Thanks for listening!

Filed Under: Quality during Design, The Reliability FM network

About Dianna Deeney

Dianna is a senior-level Quality Professional and an experienced engineer. She has worked over 20 years in product manufacturing and design and is active in learning about the latest techniques in business.

Dianna promotes strategic use of quality tools and techniques throughout the design process.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Quality during Design podcast logo

Tips for using quality tools and methods to help you design products others love, for less.


by Dianna Deeney
Quality during Design,
Hosted on Buzzsprout.com
Subscribe and enjoy every episode
Google
Apple
Spotify

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy

Book the Course with John
  Ask a question or send along a comment. Please login to view and use the contact form.
This site uses cookies to give you a better experience, analyze site traffic, and gain insight to products or offers that may interest you. By continuing, you consent to the use of cookies. Learn how we use cookies, how they work, and how to set your browser preferences by reading our Cookies Policy.